seaborn pratical machine learing data science




# # seaborn pratical 

# In[19]:


import  matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd


# In[ ]:


# sns.lineplot(
#     x=None,
#     y=None,
#     hue=None,
#     size=None,
#     style=None,
#     data=None,
#     palette=None,
#     hue_order=None,
#     hue_norm=None,
#     sizes=None,
#     size_order=None,
#     size_norm=None,
#     dashes=True,
#     markers=None,
#     style_order=None,
#     units=None,
#     estimator='mean',
#     ci=95,
#     n_boot=1000,
#     seed=None,
#     sort=True,
#     err_style='band',
#     err_kws=None,
#     legend='brief',
#     ax=None,
#     **kwargs,
# )


# In[34]:



days =       [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
temperature= [26,52,25,55,26,45,42,5,2,45,42,45,45,9,8]
temp_df=pd.DataFrame({"days":days, "temperature":temperature})
sns.lineplot(x="days",y="temperature",data=temp_df,)
plt.show()


# In[64]:


book1=pd.read_csv("I:\JNPY\mL imp\ML Project 1\Book2.csv")
book1.head()


# In[66]:


sns.lineplot(x="4no",y="total",data=book1)
plt.show()


# In[75]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
hous.head()


# In[79]:



sns.lineplot(x="Sq.ft",y="Price",data=hous)
plt.show()


# # using hue opration

# In[83]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location")
plt.show()


# # using style opration

# In[85]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location")
plt.show()


# # using palette opration

# palette is use to change the color of grah

# In[87]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location",palette="hot")
plt.show()


# # Using markers opration

# In[88]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location",palette="hot",markers=["o","^"])
plt.show()


# # using legend='brief' opration

# In[93]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location",
             palette="hot",markers=["o","^"],legend='brief' )

plt.show()


# In[97]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location",
             palette="hot",markers=["o","^"],legend=False)
plt.show()


# In[99]:


hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location",
             palette="hot",markers=["o","^"],legend="full")
plt.show()


# In[106]:


plt.figure(figsize = (25,9))
hous=pd.read_csv("I:\JNPY\mL imp\ML Project 1\house_price.csv")
sns.lineplot(x="Sq.ft",y="Price",data=hous,hue="Location",style="Location",
             palette="hot",markers=["o","^"],legend="full")
sns.set(style="whitegrid"#hite, dark, whitegrid, darkgrid, ticks

plt.show()


Post a Comment

0 Comments