#!/usr/bin/env python
# coding: utf-8
# # Hinstogram using distplot seabron
#
# In[96]:
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from scipy.stats import norm
# # using gihub
# In[13]:
# tips_df=sns.load_dataset("tips")
# tips.head()
# In[14]:
data=pd.read_csv("Startups.csv")
data.head()
# In[15]:
# sns.distplot(
# a,# wich are give you to groph data
# bins=None,
# hist=True,
# kde=True,
# rug=False,
# fit=None,
# hist_kws=None,
# kde_kws=None,
# rug_kws=None,
# fit_kws=None,
# color=None,
# vertical=False,
# norm_hist=False,
# axlabel=None,
# label=None,
# ax=None,
# )
# In[16]:
sns.distplot(data["Administration"])
# In[17]:
sns.distplot(data["Profit"],bins=10)
# In[20]:
sns.distplot(data["Profit"],hist=False)
# In[22]:
sns.distplot(data["Profit"],kde=False)
# In[24]:
sns.distplot(data["Profit"],rug=True)
# In[18]:
sns.distplot(data["Profit"],fit=norm,)
# In[26]:
sns.distplot(data["Profit"],fit=norm,kde=False)
# In[29]:
sns.distplot(data["Profit"],axlabel="Profit ")
# In[31]:
sns.distplot(data["Profit"],axlabel="Profit",color="red",)
# In[37]:
sns.distplot(data["Profit"],axlabel="Profit",color="red")
# In[39]:
sns.distplot(data["Profit"],vertical=True,)
# In[41]:
sns.set()
sns.distplot(data["Profit"])
# In[45]:
plt.figure(figsize=(10,10))
sns.set()
sns.distplot(data["Profit"],)
# In[55]:
# bins1=[1,5,10,15,20,25,30,35,40,45,50]
# # plt.figure(figsize=(10,10))
# sns.set()
# sns.distplot(data["Profit"],bins = bins1)
# plt.xticks(bins)
# In[ ]:
# hist_kws=None,
# kde_kws=None,
# rug_kws=None,
# fit_kws=None,
# In[70]:
sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
"linewidth":5,"linestyle":'--','alpha':0.8}
kde_kws=None
rug_kws=None
fit_kws=None)
# In[74]:
sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
"linewidth":5,"linestyle":'--','alpha':0.8},
kde_kws={'color':'blue',
"linewidth":5,"linestyle":'--','alpha':0.8},
rug_kws=None,
fit_kws=None)
# In[81]:
sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
"linewidth":5,"linestyle":'--','alpha':0.8},
kde_kws = None,
rug_kws={'color':'blue','edgecolor':"#aaff00",
"linewidth":13,"linestyle":'--','alpha':0.15},
fit_kws=None)
# In[95]:
sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
"linewidth":5,"linestyle":'--','alpha':0.8},
rug_kws={'color':'blue','edgecolor':"#aaff00",
"linewidth":13,"linestyle":'--','alpha':0.15},
fit_kws={'color':'bule','edgecolor':"#aaff00",
"linewidth":13,"linestyle":'--','alpha':0.9})
# In[93]:
sns.distplot(data["Profit"],bins=9,label="Profit",)
sns.distplot(data["R&D Spend"],bins=9,label="R&D Spend")
sns.distplot(data["Administration"],bins=9,label="Administration")# R&D Spend Administration\
plt.legend()
# In[94]:
sns.distplot(data["Profit"])
# In[ ]:
0 Comments