Hinstogram using distplot seabron machine learing

 





#!/usr/bin/env python
# coding: utf-8

# # Hinstogram using distplot  seabron

# In[96]:


import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from scipy.stats import norm


# # using gihub 

# In[13]:


# tips_df=sns.load_dataset("tips")
# tips.head()


# In[14]:


data=pd.read_csv("Startups.csv")
data.head()


# In[15]:


# sns.distplot(
#     a,#   wich are give you to  groph data  
#     bins=None,
#     hist=True,
#     kde=True,
#     rug=False,
#     fit=None,
#     hist_kws=None,
#     kde_kws=None,
#     rug_kws=None,
#     fit_kws=None,
#     color=None,
#     vertical=False,
#     norm_hist=False,
#     axlabel=None,
#     label=None,
#     ax=None,
# )


# In[16]:


sns.distplot(data["Administration"])


# In[17]:


sns.distplot(data["Profit"],bins=10)


# In[20]:


sns.distplot(data["Profit"],hist=False)


# In[22]:


sns.distplot(data["Profit"],kde=False)


# In[24]:


sns.distplot(data["Profit"],rug=True)


# In[18]:


sns.distplot(data["Profit"],fit=norm,)


# In[26]:


sns.distplot(data["Profit"],fit=norm,kde=False)


# In[29]:


sns.distplot(data["Profit"],axlabel="Profit ")


# In[31]:


sns.distplot(data["Profit"],axlabel="Profit",color="red",)


# In[37]:


sns.distplot(data["Profit"],axlabel="Profit",color="red")


# In[39]:


sns.distplot(data["Profit"],vertical=True,)


# In[41]:


sns.set()
sns.distplot(data["Profit"])


# In[45]:


plt.figure(figsize=(10,10))
sns.set()
sns.distplot(data["Profit"],)


# In[55]:


# bins1=[1,5,10,15,20,25,30,35,40,45,50]

# # plt.figure(figsize=(10,10))

# sns.set()

# sns.distplot(data["Profit"],bins = bins1)

# plt.xticks(bins)


# In[ ]:


# hist_kws=None,


#     kde_kws=None,
#     rug_kws=None,
#     fit_kws=None,


# In[70]:



sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
                                      "linewidth":5,"linestyle":'--','alpha':0.8}
             kde_kws=None
            rug_kws=None
            fit_kws=None)


# In[74]:



sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
                                      "linewidth":5,"linestyle":'--','alpha':0.8},
             kde_kws={'color':'blue',
                                      "linewidth":5,"linestyle":'--','alpha':0.8},
            rug_kws=None,
            fit_kws=None)


# In[81]:


sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
                                      "linewidth":5,"linestyle":'--','alpha':0.8},
             kde_kws = None,
             rug_kws={'color':'blue','edgecolor':"#aaff00",
                                      "linewidth":13,"linestyle":'--','alpha':0.15},
            fit_kws=None)


# In[95]:


sns.distplot(data["Profit"],hist_kws={'color':'red','edgecolor':"#aaff00",
                                      "linewidth":5,"linestyle":'--','alpha':0.8},
             
             rug_kws={'color':'blue','edgecolor':"#aaff00",
                                      "linewidth":13,"linestyle":'--','alpha':0.15},
            fit_kws={'color':'bule','edgecolor':"#aaff00",
                                      "linewidth":13,"linestyle":'--','alpha':0.9})


# In[93]:


sns.distplot(data["Profit"],bins=9,label="Profit",)
sns.distplot(data["R&D Spend"],bins=9,label="R&D Spend")
sns.distplot(data["Administration"],bins=9,label="Administration")# R&D Spend   Administration\
plt.legend()


# In[94]:


sns.distplot(data["Profit"])


# In[ ]:





Post a Comment

0 Comments